This new advancement in science may help many people who need artificial muscles. Artificial muscles used today do not have a self-healing capability. In today’s world, if the material used receives any damage it has to be replaced.  Imagine the next generation of materials, that can heal themselves when damaged.

A revolutionary breakthrough towards this has been created by Professor Zhenan Bao and her team of researchers at Stanford. The polymer material is known as an elastomer due to its stretchiness. When punctured the elastomer self-heals at room temperature. And when put in an electric field it expands and contracts, like real muscle. 

The machine used by Bao could only stretch the elastomer to a limit of 45 inches. This extremely stretchy polymer was found to stretch more than 100 inches after researchers simply pulled the polymer like taffy.  In addition to its ability to stretch the material heals at room temperature and up to (-20 C).  This phenomenal material can be damaged and left to age for days but will still heal.

The stretchiness and resilience of the elastomer are due to the molecular structure resembling the crosslinking of a fishnet. Metal ions in the material bind to two or more ligands. According to Bao, if there is a stress on one part of the structure, the metal ions are still attached to other sites so the elastomer keeps its form. When the stress is released the metal ions simply reconnect with the closest ligand. This material could lead to medical implants that will last years without need of being replaced.  Further applications include robotics and prosthetics. Their research may save lives and help generations of people to come.

The work was accomplished by Professor Zhenan Bao, Cheng-Hui Li, Jing-Lin Zuo, Lihua Jin, Yang Sun, Peng Zheng, Yi Cao, Christian Linder and Xiao-Zeng You.

 Written by: Angelica Ramirez


Bao, Z. (2016). A highly stretchable autonomous self-healing elastomer. Nature Chemistry.